Gönderen Konu: Tam Sayılar Çözümlü Sorular  (Okunma sayısı 641 defa)

0 Üye ve 1 Ziyaretçi konuyu incelemekte.

Su_PeRiSi

  • Ziyaretçi
Tam Sayılar Çözümlü Sorular
« : 16 Ekim 2012, 01:18:21 »
Tam sayılarla ilgili soru ve cevaplar
 Tam ve doğal sayılarla ilgili sorular
 Tam sayılar çözümlü sorular
 
1.soru: 8 tane sayının aritmetik ortalaması 15’tir. Bu sayılara 21 ve 29 katılsaydı, aritmetik ortalama kaç olurdu?
 Çözüm:
 Bu sekiz sayının toplamı,
 8 . 15 = 120’dir
 

2.soru: Ardışık 6 tane doğal sayının toplamı, bu sayıların en küçüğünün 7 katına eşittir. Bu sayıların en büyüğü kaçtır?
 Çözüm:
 Ardışık 6 doğal sayı; x, x + 1, x + 2, x + 3, x + 4, x + 5 olsun.
 x + (x + 1) + … + (x + 5) = 7x
 6x + 15 = 7x Þ x = 15 olur.
 Bu sayıların en büyüğü
 x + 5 = 15 + 5 = 20’dir.
 

3.soru: Rakamları 0 ve 1’den farklı olan dört basamaklı abcd sayısının rakamlarının sayı değerleri birer azaltılırsa sayı kaç azalır?
 Çözüm:
 (abcd) = 2376 olsun.
 Bu sayının rakamlarının sayı değerleri birer azaltılırsa sayı 1265 olur.
 Fark 2376 – 1265 = 1111’dir.
 

4.soru: İki basamaklı (ab) sayısının dört katından, (ba) sayısının 3 katı çıkarıldığında fark 218 oluyor. b = 3 ise a kaçtır?
 Çözüm:
 (ab) = 10a + b ve (ba) = 10b + a’dır. b = 3 ise,
 4 . (10a + 3) – 3(10 . 3 + a) = 218
 40 . a + 12 – 90 – 3a = 218
 37 . a = 296
 a = 8 olur.
 

5.soru: a, b, c ardışık tek sayma sayılarıdır. a . c = 357 ise b + c kaçtır?
 Çözüm:
 Ardışık üç tek sayı; a = x – 2, b = x, c = x + 2 olsun.
 a . c = 357 Þ (x – 2) . (x + 2) = 357
 x2 – 4 = 357
 x2 = 361 = 192
 Buradan x = 19 bulunur.
 Buna göre; b = 19, c = 21 ve b + c = 40 olur.
 

6.soru: Toplamları 57 olan iki sayıdan büyüğü küçüğüne bölündüğünde bölüm 5, klan 3 oluyor. bu iki sayının çarpımı kaçtır?
 Çözüm:
 Büyük sayı x ise, küçük sayı (57 – x) olur.
 x = (57 – x) . 5 + 3 bölme eşitliğinden,
 x = 48 bulunur.
 57 – x = 57 – 48 = 9 dur.
 Bu iki sayının çarpımı, 48 . 9 = 432 olur.
 

7.soru: Ardışık üç sayma sayısının karelerinin toplamı 149 olduğuna göre, bu üç sayının toplamı kaçtır?
 Çözüm:
 Bu sayılar; x – 1, x ve x + 1 olsun.
 (x – 1)2 + x2 + (x + 1)2 = 149
 3×2 = 147
 x2 = 49
 x = 7
 Bu üç sayı; 6, 7 ve 8’dir.
 6 + 7 + 8 = 21’dir.
 

8.soru: 6 ve 7 sayılarına bölündüğünde 5 kalanını veren üç basamaklı en küçük sayma sayısının en az kaç fazlası 9 ile tam bölünür?
 Çözüm:
 A = 6x + 5 = 7y + 5 ise, 6 ile 7’nin ekok’u 42 olduğundan;
 A = 42 . t + 5’tir. A’nın en küçük üç basamaklı değeri, t = 3 için 131’dir.
 131 sayısının rakamlarının toplamı 1 + 3 + 1 = 5 ve 9 – 5 = 4 olduğundan, 131’in 4 fazlası 9 ile tam bölünür.
 

9.soru: 3 basamaklı abc doğal sayısı 6 ile bölünüyor. ise bac sayısı, aşağıdakilerden hangisine tam bölünmez?
 Çözüm:
 (abc) sayısı 6 ile tam bölündüğünde c çifttir. ve c çift koşulunun sağlanması için c = 2 olmalıdır. Bu durumda,
 (abc) = 642 ve (bac) = 462 olur.
 462 = 2 . 3 . 7 . 11 sayısının asal çarpanları arasında 22 . 3 bulunmadığından, 462 sayısı 12 ile tam bölünmez[Üye Olmadan Linkleri Göremezsiniz. Üye Olmak için TIKLAYIN...]
 

10.soru: 540 . x = b2 eşitliğinde x ve b sayma sayılarıdır. bu koşula uyan b sayılarının en küçüğü kaçtır?
 Çözüm:
 540 = 22 . 33 . 5 tir.
 22 . 33 . 5 . x = b2 eşitliğinde, x en az 3 . 5 olmalıdır. Buna göre,
 22 . 33 . 5. 3 . 5 = b2
 22 . 34 . 52 = b2 Þ (2 . 32 .5)2 = b2
 b = 2 . 32 . 5 = 90 olur.
 

11.soru: a, m, n sayma sayılarıdır. a = 9m + 8 = 6n + 5 koşullarını sağlayan 300’den büyük en küçük a sayma sayısı kaçtır?
 Çözüm:
 a + 1 = 9m + 9 = 6n + 6 olduğundan, a + 1 sayısı hem 9, hem de 6 ile bölünebileceğinden 18 ile de tam bölünür. 300’den büyük ve 18’in tam katı olan ilk sayı 306 olduğundan,
 a + 1 = 306 a = 305’tir.
 

12.soru: -2 . (3 – 5) – [(5 – 13) : (-2) – (-2)3] işleminin sonucu nedir?
 Çözüm:
 -2 . (2 – 5) – [(5 – 13) : (-2) – (-2)3]
 = -2 . (-2) – [(-8) : (-2) – (-8)]
 = 4 – [4 + 8] = -8
 

13.soru: A = 6 . 105 + 2 . 102 + 3, B = 87532 olduğuna göre, A + B kaç olur?
 Çözüm:
 A = 6 . 105 + 2 . 102 + 3 = 600203 ve
 B = 87532 olduğundan, A + B = 687735 olur
 

14.soru: Üç basamaklı abc doğal sayısı 15 ile tam bölünüyor. a + b + c en fazla kaç olabilir?
 Çözüm:
 Sayı hem 5, hem de 3 ile tam bölünebildiğinde, c = 5 ve a + b + 5 = 3 . k = 21 olur

Resim - Oyun Forum - Müzik Forum - Mirc İndir - Film İzle - Sinema İzle

Tam Sayılar Çözümlü Sorular
« : 16 Ekim 2012, 01:18:21 »


Paylaş delicious Paylaş digg Paylaş facebook Paylaş furl Paylaş linkedin Paylaş myspace Paylaş reddit Paylaş stumble Paylaş technorati Paylaş twitter